COMPUTER ASSIGMENT

’ NVERSE PROBLEMS ARE AMONG THE MOST
CHALLENGING COMPUTATIONS IN SCIENCE
AND ENGINEERING BECAUSE THEY INVOLVE DE-
TERMINING THE PARAMETERS OF A SYSTEM THAT

is only observed indirectly. For example, we might have a
spectrum and want to determine the species that produced
itas well as their relative proportions, Or we may have sonar
measurements of a containment tank and want to know
whether it has an internal crack,

Here is this issue’s homework assignment: given a blurred
image and a lincar model for the blurring, reconstruct the
original image. This linear inverse problem illustrates the
impact of #l-conditionig on the choice of algorithms.

lll-Conditioning

Consider a linear system of equations

Kf:g

Tools

The major tool used in this project is the singular value
decomposition of a matrix. Any real matrix A of dimen-
sion m X n (with m 2 n) has a representation as

A=UzV

where U'U= I, V'V = |, and £ has nonnegative entries o;
(i=1, ...,n) on its main diagonal and zeros elsewhere.
The matrix Uis mX m, Vis nX n, and £ is m X n.The sin-
gular values g;are the square roots of the eigenvalues of
A'A, and the columns of V are the eigenvectors of that ma-
trix. The columns of U are the eigenvectors of A4". Compu-
tation of the singular value decomposition is more stable
than forming A4 and computing the eigendecompaosition.

where K'is an » X n matrix, and fand g are vectors. Suppose
Kis scaled so that its largest singular value is 0 = 1. If the
smallest singular value is @, = 0, then Kis dl-conditioned. We
distinguish two types of ill-conditioning:

¢ The matrix K'is considered numerically rank deficient
if there is a f such that g » 6,1 = ... = 0, = (. That is,
there is an obvious gap between large and small singu-
lar values,

¢ If the singular values decay to zero with no particular gap
in the spectrum, we say the linear system Kf = g is a dis-
crete ill-posed problem,

Computing accurate approximate solutions of discrete ill-
posed problems is extremely difficult, especially because in
most real applications, g is not known exactly. Rather, the
collected data typically has the form

g=Kf+n,

where 1) is a vector representing (unknown) noise or mea-
surement errors. The goal, then, is given an ill-conditioned
matrix K and a vector g, compute an approximation of the
unknown vector £,

Naively solving Kf = g usually does not work because the
matrix Kis so ill-conditioned, Instead, regularization is used
to make the problem less sensitive to the noise,

Tikhonov Regularization

The best-known regularization procedure—Tikhonov reg-
ularization—computes a solution of the damped least-
squares problem:

minflg- K6} + o} 0

The extra term a-’|]f]|i imposes a penalty for making the
norm of the solution too big, which reduces the effect of
small singular values. This regularized problem is also a
least-squares problem.



Problem 1. Show that Equation 1 is equivalent to
the linear least-squares problem,
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The scalar ot (called a regularization parameter) controls the
solution’s degree of smoothness. Note that ¢= 0 implies no reg-
ularization; the computed solution to Equation 2 with a¢= 0 will
likely be horribly corrupted with noise. On the other hand, if
ais large, then the computed solution cannot be a good ap-
proximation of the exact f. Choosing an appropriate value for
@is not a trivial matter. Various algorithms appear elsewhere
in the literature,’ but we use a manual approach here,

Let’s turn to the problem of solving the least-squares
problem encountered in Equation 2 in Problem 1.

@

Problem 2. Show that if K has a singular value de-
composition K= ULV, then Equation 2 can be trans-
formed into the equivalent least-squares problem,

fiHal :

wheref = V' andg = U'g.

Problem 3. Determine a formula for the solution to
Equation 3. Hint: you should set the derivative of the
minimization function to zero and solve for f,

This gives us an algorithm to determine the Tikhonov so-
lution to a discrete ill-posed problem.

Truncated Singular Value Decomposition
Another way of regularizing the problem is to truncate the
singular value decomposition (SVD), Problem 4 demon-
strates how to express the solution to the least-squares prob-
lem in terms of the SVD.

We can see that trouble occurs in £, if 2 small value of ;
divides a term u,Tg that is dominated by error, In such cases,
f,, will be dominated by error.

Problem 4. Show that the solution to the problem

minflg- K}
i
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f,=VUTg=Y ~v,,
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where u; is the ith column of U, and v; is the ith col-
umn of V.
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Figure 1. Use two algorithms to read the text in this
blurred message.

To overcome this, Richand Hansoa (25 well 23 James Varals)
sugggeseed truncating the previously mentioned expansion,*

f=tﬂv
: . ir

for some value of p < n.

Now we have all the tools in glace wo solve & deblurring
prollem in image processing. Suppose we kave 1 blurred,
noisy image G (Long with some knowledge of the blurring
operator), and we want to recanstruct the true orgied in-
age F.This i an example of a discrete ili-posed problem, in
which the veetars in the linear system g = Kf + 1) zepresent
the image arrays stacked by columns tw form vectors. In
Matlab rotatson, 1t looks ke thic

¢ foreshape(F, n, 1),
¢ g« reshape(G,n, 1),

The goa! in this problem s given Kand G, reconstruct an
approximation of the unknown image F,

If we assume Fand G eontain va x yn paxels, then Fand
g are vectors of length s, and K is 2n # X # matrix repre-
sentitg the blursing opesation. In geness], this matrx is tow
large to use the SVD. However, in some cases, we can write
K x5 a Kroaedker product, K= A @ B, annd thers we can use
the SVD.

A Few Facts on Kronecker Products®
The Kronecker produce 4 @ B, irs which A is an m % m ma-
trix, & defined 25

anl a8 .2 B
418 B= ayB a8 .. 2B

5-,8 '7:23 Spe an-ts

Theceem 1. i A= Z W) and 8-U,LV, ther K « UEV,
where Ve UL QU L5, B ard Ve Y, BV,

Therefore, computing the SVD af a lange matrix 5 possible
if2t is the Kronecker product of two smaller ones, On the Weedy
page for this colume (hrp:feompater.ong/cise/homework/
vin3.ltm), there i 2 sample Matlab program, projdeno.a,
illustrating this propesty,

To sobve our image-deblursing prablem, we must operate
carcfully with the sl nuesices; otherwise, storage quickly be-
comes an sswe. Again, see the aenple peogram for gulance.
With the Keonecker produce 252 tool, we are ready o conguze.

Problem 5: Write a program that takes
matrices A, B and image G and computes
approximations to image F using Tikhonov
regularization and Truncated SVD. For each of
these two algorithms, experiment to find the
valueof the regularization parameter (a for
Tikhenov or p for TSVD) that gives the
clearest image. In the file of the project you
will find the necessary matrices.
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